This function manage predictors names in sdm_area
objects.
Usage
predictors(x)
# S3 method for class 'sdm_area'
predictors(x)
# S3 method for class 'input_sdm'
predictors(x)
set_predictor_names(x, new_names)
# S3 method for class 'input_sdm'
set_predictor_names(x, new_names)
# S3 method for class 'sdm_area'
set_predictor_names(x, new_names)
get_predictor_names(x)
# S3 method for class 'sdm_area'
get_predictor_names(x)
# S3 method for class 'input_sdm'
get_predictor_names(x)
test_variables_names(sa, scen)
set_variables_names(s1 = NULL, s2 = NULL, new_names = NULL)
Value
predictors
and get_predictor_names
return a character
vector with
predictors names.
test_variables_names
returns a logical informing if all variables are equal in both
objects (TRUE) or not (FALSE).
set_variables_names
returns the s1
object with new names provided by s2
or
new_names
.
Details
This functions is available so users can modify predictors names to better represent them. Use
carefully to avoid giving wrong names to the predictors. Useful to make sure the predictors names
are equal the names in scenarios.
test_variables_names
Tests if variables in a stars
object (scen
argument)
matches the given sdm_area
object (sa
argument).
set_variables_names
will set s1
object variables names as the s2
object
variables names OR assign new names to it.
Examples
# Create sdm_area object:
sa <- sdm_area(parana, cell_size = 50000, crs = 6933)
#> ! Making grid over study area is an expensive task. Please, be patient!
#> ℹ Using GDAL to make the grid and resample the variables.
# Include predictors:
sa <- add_predictors(sa, bioc)
#> ! Making grid over the study area is an expensive task. Please, be patient!
#> ℹ Using GDAL to make the grid and resample the variables.
# Check predictors' names:
get_predictor_names(sa)
#> [1] "GID0" "CODIGOIB1" "NOMEUF2" "SIGLAUF3" "bio1" "bio4"
#> [7] "bio12"