
Package index
-
GBIF_data() - Retrieve Species data from GBIF
-
WorldClim_data() - Download WorldClim v.2.1 bioclimatic data
-
add_predictors()get_predictors() - Add predictors to
sdm_area
-
add_scenarios()set_scenarios_names()scenarios_names()get_scenarios_data()select_scenarios() - Add scenarios to
sdm_area
-
algorithms - Caret Algorithms
-
bioc - Bioclimatic Variables
-
buffer_sdm() - Create buffer around occurrences
-
correlate_sdm() - Correlation between projections
-
data_clean() - Presence data cleaning routine
-
gcms_ensembles() - Ensemble GCMs into one scenario
-
input_sdm()add_input_sdm() input_sdm
-
is_input_sdm()is_sdm_area()is_occurrences()is_models()is_predictions() is_classfunctions to check caretSDM data classes.
-
join_area() - Join Area
-
occ - Araucaria angustifolia occurrence data
-
occurrences_sdm()n_records()species_names()get_coords()occurrences_as_df()add_occurrences() - Occurrences Managing
-
parana - Paraná State
-
pca_predictors()pca_summary()get_pca_model() - Predictors as PCA-axes
-
pdp_sdm()get_pdp_sdm() - Model Response to Variables
-
plot_occurrences()plot_grid()plot_predictors()plot_scenarios()plot_predictions()mapview_grid()mapview_occurrences()mapview_predictors()mapview_scenarios()mapview_predictions()plot_background()plot_niche() - S3 Methods for plot and mapview
-
predict_sdm()get_predictions()get_ensembles()add_predictions() - Predict SDM models in new data
-
prediction_change_sdm() - Prediction Change Analysis
-
predictors()set_predictor_names()get_predictor_names()test_variables_names()set_variables_names() - Predictors Names Managing
-
print(<input_sdm>) - Print method for input_sdm
-
print(<models>) - Print method for models
-
print(<occurrences>) - Print method for occurrences
-
print(<predictions>) - Print method for predictions
-
pseudoabsences()n_pseudoabsences()pseudoabsence_method()pseudoabsence_data() - Obtain Pseudoabsences
-
rivs - Hydrologic Variables
-
salm - Salminus brasiliensis occurrence data
-
scen - Bioclimatic Variables
-
scen_rs - Bioclimatic Variables
-
sdm_area()get_sdm_area()add_sdm_area() - Create a
sdm_areaobject
-
sdm_as_stars()sdm_as_raster()sdm_as_terra() sdm_as_Xfunctions to transformcaretSDMdata into other classes.
-
summary_sdm()summary_sdm_presence_only()validate_on_independent_data() - Calculates performance across resamples
-
select_predictors()select(<sdm_area>)select(<input_sdm>)mutate(<sdm_area>)mutate(<input_sdm>)filter(<sdm_area>)filter(<input_sdm>)filter(<occurrences>)filter_species() - Tidyverse methods for caretSDM objects
-
train_sdm()get_tune_length()algorithms_used()get_models()get_validation_metrics()mean_validation_metrics()add_models() - Train SDM models
-
tsne_sdm() - tSNE
-
tuneGrid_sdm() - Retrieve tuneGrid from models
-
use_esm() - Ensemble of Small Models (ESM) in caretSDM
-
use_mem() - MacroEcological Models (MEM) in caretSDM
-
varImp_sdm() - Calculation of variable importance for models
-
vif_predictors()vif_summary()selected_variables() - Calculate VIF