This function aims to retrieve the tune grid used to build models.
Examples
# Create sdm_area object:
set.seed(1)
sa <- sdm_area(parana, cell_size = 100000, crs = 6933)
#> ! Making grid over study area is an expensive task. Please, be patient!
#> ℹ Using GDAL to make the grid and resample the variables.
# Include predictors:
sa <- add_predictors(sa, bioc) |> select_predictors(c("bio1", "bio12"))
#> ! Making grid over the study area is an expensive task. Please, be patient!
#> ℹ Using GDAL to make the grid and resample the variables.
# Include scenarios:
sa <- add_scenarios(sa)
# Create occurrences:
oc <- occurrences_sdm(occ, crs = 6933) |> join_area(sa)
# Create input_sdm:
i <- input_sdm(oc, sa)
# Pseudoabsence generation:
i <- pseudoabsences(i, method="random", n_set=2)
# Custom trainControl:
ctrl_sdm <- caret::trainControl(method = "boot",
number = 1,
repeats = 1,
classProbs = TRUE,
returnResamp = "all",
summaryFunction = summary_sdm,
savePredictions = "all")
#> Warning: `repeats` has no meaning for this resampling method.
# Train models:
i <- train_sdm(i, algo = c("naive_bayes"), ctrl=ctrl_sdm) |>
suppressWarnings()
# Retrieve tuneGrid from model:
tuneGrid_sdm(i)
#> $`Araucaria angustifolia`
#> $`Araucaria angustifolia`$m1.1
#> laplace usekernel adjust
#> 1 0 FALSE 1
#> 2 0 TRUE 1
#>
#> $`Araucaria angustifolia`$m2.1
#> laplace usekernel adjust
#> 1 0 FALSE 1
#> 2 0 TRUE 1
#>
#>