Set of functions to facilitate the use of caretSDM through tidyverse grammatics.
Usage
select_predictors(x, ...)
# S3 method for class 'sdm_area'
select(.data, ...)
# S3 method for class 'input_sdm'
select(.data, ...)
# S3 method for class 'sdm_area'
mutate(.data, ...)
# S3 method for class 'input_sdm'
mutate(.data, ...)
# S3 method for class 'sdm_area'
filter(.data, ..., .by, .preserve)
# S3 method for class 'input_sdm'
filter(.data, ..., .by, .preserve)
# S3 method for class 'occurrences'
filter(.data, ..., .by, .preserve)
filter_species(x, spp = NULL, ...)
Examples
# Create sdm_area object:
sa <- sdm_area(parana, cell_size = 25000, crs = 6933)
#> ! Making grid over study area is an expensive task. Please, be patient!
#> ℹ Using GDAL to make the grid and resample the variables.
# Include predictors:
sa <- add_predictors(sa, bioc) |> select_predictors(c("bio1", "bio4", "bio12"))
#> ! Making grid over the study area is an expensive task. Please, be patient!
#> ℹ Using GDAL to make the grid and resample the variables.