Obtain the Partial Dependence Plots (PDP) to each variable.
Usage
pdp_sdm(i, spp = NULL, algo = NULL, variables_selected = NULL, mean.only = FALSE)
get_pdp_sdm(i, spp = NULL, algo = NULL, variables_selected = NULL)
Arguments
- i
A
input_sdm
object.- spp
A
character
vector with species names to obtain the PDPs. IfNULL
(standard), the first species inspecies_names(i)
is used.- algo
A
character
containing the algorithm to obtain the PDP. IfNULL
(standard) all algorithms are mixed.- variables_selected
A
character
. If there is a subset of predictors that should be ploted in this, it can be informed using this parameter.- mean.only
Boolean. Should only the mean curve be plotted or a curve to each run should be included? Standard is FALSE.
Examples
# Create sdm_area object:
sa <- sdm_area(parana, cell_size = 100000, crs = 6933)
#> ! Making grid over study area is an expensive task. Please, be patient!
#> ℹ Using GDAL to make the grid and resample the variables.
# Include predictors:
sa <- add_predictors(sa, bioc) |> select_predictors(c("bio1", "bio12"))
#> ! Making grid over the study area is an expensive task. Please, be patient!
#> ℹ Using GDAL to make the grid and resample the variables.
# Include scenarios:
sa <- add_scenarios(sa)
# Create occurrences:
oc <- occurrences_sdm(occ, crs = 6933) |> join_area(sa)
#> Warning: Some records from `occ` do not fall in `pred`.
#> ℹ 2 elements from `occ` were excluded.
#> ℹ If this seems too much, check how `occ` and `pred` intersect.
# Create input_sdm:
i <- input_sdm(oc, sa)
# Pseudoabsence generation:
i <- pseudoabsences(i, method="bioclim", n_set=3)
# Custom trainControl:
ctrl_sdm <- caret::trainControl(method = "repeatedcv",
number = 2,
repeats = 1,
classProbs = TRUE,
returnResamp = "all",
summaryFunction = summary_sdm,
savePredictions = "all")
# Train models:
i <- train_sdm(i, algo = c("naive_bayes"), ctrl=ctrl_sdm)
#> Warning: There were missing values in resampled performance measures.
# PDP plots:
pdp_sdm(i)
#> `geom_smooth()` using method = 'loess' and formula = 'y ~ x'
get_pdp_sdm(i)
#> $naive_bayes
#> # A tibble: 156 × 4
#> id yhat variable value
#> <chr> <dbl> <chr> <dbl>
#> 1 m1.1 0.996 bio1 15.9
#> 2 m1.1 0.996 bio1 16.1
#> 3 m1.1 0.998 bio1 16.3
#> 4 m1.1 0.998 bio1 16.6
#> 5 m1.1 0.999 bio1 16.8
#> 6 m1.1 0.999 bio1 17.1
#> 7 m1.1 1.00 bio1 17.3
#> 8 m1.1 1.00 bio1 17.6
#> 9 m1.1 1.00 bio1 17.8
#> 10 m1.1 0.999 bio1 18.1
#> # ℹ 146 more rows
#>