This function aims to unveil the correlation of different algorithms outputs. For that, it uses the predictions on current scenario, but other scenarios can be tested.
Examples
# Create sdm_area object:
set.seed(1)
sa <- sdm_area(parana, cell_size = 100000, crs = 6933)
#> ! Making grid over study area is an expensive task. Please, be patient!
#> ℹ Using GDAL to make the grid and resample the variables.
# Include predictors:
sa <- add_predictors(sa, bioc) |> select_predictors(c("bio1", "bio12"))
#> ! Making grid over the study area is an expensive task. Please, be patient!
#> ℹ Using GDAL to make the grid and resample the variables.
# Include scenarios:
sa <- add_scenarios(sa)
# Create occurrences:
oc <- occurrences_sdm(occ, crs = 6933) |> join_area(sa)
# Create input_sdm:
i <- input_sdm(oc, sa)
# Pseudoabsence generation:
i <- pseudoabsences(i, method="random", n_set=2)
# Custom trainControl:
ctrl_sdm <- caret::trainControl(method = "boot",
number = 1,
repeats = 1,
classProbs = TRUE,
returnResamp = "all",
summaryFunction = summary_sdm,
savePredictions = "all")
#> Warning: `repeats` has no meaning for this resampling method.
# Train models:
i <- train_sdm(i, algo = c("naive_bayes"), ctrl=ctrl_sdm) |>
suppressWarnings()
#> Loading required package: ggplot2
#> Loading required package: lattice
#>
#> Attaching package: ‘caret’
#> The following object is masked from ‘package:caretSDM’:
#>
#> predictors
# Predict models:
i <- predict_sdm(i, th = 0.8)
#> [1] "Projecting: 1/1"
#> [1] "Ensembling..."
#> [1] "current"
#> [1] "Araucaria angustifolia"
# Check correlations:
correlate_sdm(i)
#> $`Araucaria angustifolia`
#> m1.1 m2.1
#> m1.1 1 1
#> m2.1 1 1
#>